메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Rashank Jain (Dayalbagh Educational Institute (Deemed University)) Asim Husain (Dayalbagh Educational Institute (Deemed University)) Aruzhan Jussibaliyeva (Kazakh-Russian International University) Kenzhegul Khassenova (L.N. Gumilyov Eurasian National University) Nurgul Shamisheva (L.N. Gumilyov Eurasian National University) Gulnara Sagindykova (Kazakh University of Economics, Finance and International Trade)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.21 No.3
발행연도
2022.9
수록면
492 - 502 (11page)
DOI
10.7232/iems.2022.21.3.492

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In today’s competitive environment, projects must be implemented at a lower cost and in less time, and resources must be used optimally. Therefore, project management and scheduling using an efficient tool is a necessity. Resource constraint project scheduling (RCPSP) is one of the most widely used project planning issues. One of the most difficult non-polynomial problems is that innovative and meta-heuristic methods are more effective than exact solutions. The current study mainly aims to introduce a new meta-innovative algorithm with an imperialist competitive algorithm and genetic algorithm (ICA-GA). Next, by proposing a two-objective project scheduling problem, it is attempted to minimize the project execution time and its cost simultaneously with the proposed algorithm. Finally, to assess the validity of the ICA-GA hybrid algorithm, the famous MOPSO algorithm in solving the proposed model is utilized. The evaluated data is extracted from the PSPLIB standard library. The study’s results demonstrate that the imperialist-genetic competition algorithm is superior to the MOPSO algorithm and holds high efficiency in solving the proposed model.

목차

ABSTRACT
1. INTRODUCTION
2. LITERATURE REVIEW
3. RESEARCH METHOD
4. RESULTS AND DISCUSSION
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-530-000104580