메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
An Cong Tran (Can Tho University) Lai Thi Ho (Can Tho University) Hai Thanh Nguyen (Can Tho University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.11 No.5
발행연도
2022.10
수록면
316 - 323 (8page)
DOI
10.5573/IEIESPC.2022.11.5.316

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Information extraction automatically obtains structured information from unstructured or semi-structured machine-readable documents. The extraction steps consist mainly of classifying words (tagging). The output can be stored as key-value pairs in a computer-friendly file format, and then stored in a database for later reference. Information extraction from receipts or invoices is a difficult task because the tagging step should not be done solely on machine-readable words. Also, we obtain layout information or positions of words relative to other words in the invoices or receipts. This study deployed optical character recognition solutions for the Vietnamese language (VietOCR) combining a graph convolutional network (GCN) to extract information from 731 Vietnamese invoices issued by several stores. First, we collected invoice images captured with smartphones from supermarkets in Vietnam. Then, with those images we proceeded with text detection and recognition, then feature processing. The dataset was classified into two parts for training and testing, and we executed classification tasks with two GCNs. Experimental results revealed that our proposed method reached 99.50%, 98.52%, 98.52%, and 98.52% for accuracy, recall, precision, and F1-score, respectively. This work is expected to prove useful for information extraction from image-based documents.

목차

Abstract
1. Introduction
2. Related Work
3. The Proposed Method
4. EXPERIMENTS
5. Conclusion
References

참고문헌 (27)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-569-000205301