메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Yueming Qu (Hanyang University) Qiong Jia (Hanyang University) Euee S. Jang (Hanyang University)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 한국방송·미디어공학회 2022 추계학술대회
발행연도
2022.11
수록면
112 - 115 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The process of deep learning usually needs to deal with massive data which has greatly limited the development of deep learning technologies today. Convolutional Neural Network (CNN) structure is often used to solve image classification problems. However, a large number of images may be required in order to train an image in CNN, which is a heavy burden for existing computer systems to handle. If the image data can be compressed under the premise that the computer hardware system remains unchanged, it is possible to train more datasets in deep learning. However, image compression usually adopts the form of lossy compression, which will lose part of the image information. If the lost information is key information, it may affect learning performance. In this paper, we will analyze the effect of image compression on deep learning performance on CNN-based cat and dog classification. Through the experiment results, we conclude that the compression of images does not have a significant impact on the accuracy of deep learning.

목차

Abstract
1. Introduction
2. Related Work
3. Proposed Method
4. Experiment Result
5. Conclusion
Reference

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0