메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박경태 (건국대학교) 김원준 (건국대학교) 이용 (한국과학기술정보연구원) 장래영 (한국과학기술정보연구원) 최명석 (한국과학기술정보연구원)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제27권 제6호
발행연도
2022.11
수록면
897 - 905 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
비디오 영상 내 주요 프레임(Key Frame) 검출은 컴퓨터 비전 분야에서 꾸준히 연구되고 있는 분야 중 하나이다. 최근 심층학습(Deep Learning) 기술의 발전으로 비디오 영상에서의 주요 프레임 검출 성능이 향상 되었으나, 다양한 종류의 영상 콘텐츠 및 복잡한 배경으로 인해 여전히 효과적인 학습이 어려운 문제점이 있다. 본 논문에서는 대조적 학습(Contrastive Learning)과 메모리 뱅크(Memory Bank)를 통해 영상의 주요 프레임을 검출하는 새로운 방법을 제안한다. 제안하는 방법은 입력 프레임과 같은 영상 내 이웃하는 프레임 간 차이와 다른 영상 내 프레임과의 차이를 기반으로 특징 추출 신경망을 학습한다. 이와 같은 대조적 학습을 통해 메모리 뱅크에 주요 프레임을 저장 및 갱신하여 영상의 중복성을 효과적으로 제거한다. 비디오 영상 데이터셋에서의 실험 결과를 통해 제안하는 방법의 성능을 검증하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 제안하는 방법
Ⅲ. 실험 결과 및 분석
Ⅳ. 결론
참고문헌 (References)

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0