메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박관익 (한양대학교) 심규동 (한양대학교) 견민수 (한양대학교) 이상화 (서울대학교) 백정현 (케이엠씨로보틱스) 박종일 (한양대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제27권 제6호
발행연도
2022.11
수록면
923 - 935 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
본 논문에서는 스마트팜 시스템에서 재배 중인 식물 잎의 질병을 검출하고, 질병 유형을 분류하는 방법을 제안한다. 영상으로부터 식물 잎의 컬러 정보와 질병 유형의 형태 정보를 다층 퍼셉트론(MLP) 모델을 이용하여 학습한다. 1단계에서는 입력된 영상의 컬러 분포를 분석하여 질병 존재 여부를 판단한다. 1단계의 질병 존재 가능성이 높은 영상에 대하여 2단계에서는 Mean shift clustering을 이용하여 작은 영역으로 분할하고, 각 분할된 영역 단위로 컬러 정보를 추출하여 제안한 Color Network에 의하여 질병 여부를 판별한다. 컬러 분할된 영역이 Color Network에 의하여 질병으로 판별되면, 3단계에서는 그 영역의 형태 정보를 추출하여 제안한 Shape Network를 이용하여 질병의 유형을 분류한다. 사과나무 잎과 서양 양상추(Iceberg)에서 발생하는 두 가지 대분류 유형의 질병에 대하여, 제안한 기법은 작은 영역 단위로는 92.3%의 잎 질병 검출률을 보였으며, 보통 2개 이상의 질병 영역이 존재하는 한 장의 영상 단위로는 99.3% 이상의 검출률을 보였다. 본 논문에서 제안한 방법은 스마트팜 환경에서 잎 식물의 질병 여부를 조기에 발견할 수 있으며, 대상 식물에 따른 추가 학습 없이 다양한 식물과 질병 유형으로 확대 적용이 가능하다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 식물 잎 질병 검출 및 분류 모델
Ⅲ. 실험 결과 및 분석
Ⅳ. 결론
참고문헌 (References)

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0