메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김근한 (한국환경연구원)
저널정보
한국기후변화학회 한국기후변화학회지 Journal of Climate Change Research Vol.13 No.6
발행연도
2022.12
수록면
859 - 867 (9page)
DOI
10.15531/KSCCR.2022.13.6.859

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
It is necessary to establish environmental policies based on data-based analysis in order to solve complex and diverse environmental problems that occur continuously. However, simple analysis of environmental spatial information and data has limitations in establishing effective environmental policies and solving environmental problems. It is necessary to utilize objective analysis using artificial intelligence techniques such as probability/statistics, machine learning, and deep learning through convergence and complex connection with new technologies such as sensors, images, and drones. In particular, location-based spatial information can provide tools and technologies to understand, analyze, and visualize phenomena that appear differently depending on the location of an actual phenomenon. In addition, the convergence of spatial information and various data enables value creation through new knowledge. Therefore, in this study, it is proposed to establish a GeoAI-based environmental policy establishment support system that can converge and link spatial information based on location information and various data. And in order to examine the applicability of this support system, meaningful results could be derived by analyzing the relationship between LST and land use/cover for Seoul. The valuable new knowledge derived through this GeoAI-based environmental policy establishment support system is expected to be utilized as various basic data for future city and environmental planning.

목차

ABSTRACT
1. 서론
2. GeoAI 기반 정책 수립 지원 체계 구축 방법론
3. GeoAI 기반 정책 수립 지원 체계 적용 실험
4. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-453-000288889