메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
조승아 (덕성여자대학교) 이하영 (덕성여자대학교) 장혜림 (덕성여자대학교) 김규리 (덕성여자대학교) 이현지 (덕성여자대학교) 손봉기 (서원대학교) 이재호 (덕성여자대학교)
저널정보
한국산업정보학회 한국산업정보학회논문지 한국산업정보학회논문지 제27권 제6호
발행연도
2022.12
수록면
13 - 23 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 패션 분야의 비정형 데이터 검색을 위한 패션 아이템별 세부 컨포넌트 이미지 분류 알고리즘을 제안한다. 코로나-19 환경으로 인하여 최근 AI 기반 쇼핑몰이 증가하는 추세이다. 하지만 기존의 키워드 검색과 사용자 서핑 행위 기반 개인 맞춤형 스타일 추천으로는 정확한 비정형 데이터 검색에는 한계가 있다. 본 연구는 다양한 온라인 쇼핑 사이트에서 크롤링한 이미지를 사용하여 Mask R-CNN을 활용한 전처리를 진행한 후, CNN을 통해 패션 아이템별 컴포넌트에 대한 분류를 진행하였다. 셔츠의 카라 및 패턴과 청바지의 핏, 워싱 및 컬러에 대한 분류를 진행하였으며, 다양한 전이학습 모델을 비교 분석한 후 가장 높은 정확도가 나온 Densenet121모델을 사용하여 셔츠의 카라는 93.28%, 셔츠의 패턴은 98.10%의 정확도를 도달하였으며, 청바지의 핏은 Notched, Spread, Straight 3가지의 클래스의 경우 91.73%, Regular 핏을 추가한 4가지의 클래스의 경우 81.59%, 청바지의 색상은 93.91%, 청바지의 Washing은 91.20%, 청바지의 Demgae는 92.96%의 정확도를 도출하였다.

목차

요약
Abstract
1. 서론
2. 연구배경
3. 모델 설계
4. 성능 분석
5. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-530-000300151