메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
허인석 (금오공과대학교) 김범수 (금오공과대학교) 권민성 (금오공과대학교) 신종규 (금오공과대학교) 김상호 (금오공과대학교)
저널정보
대한인간공학회 대한인간공학회 학술대회논문집 2022 대한인간공학회 춘계공동학술대회 [2개 학회 공동개최]
발행연도
2022.4
수록면
5 - 8 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Objective: This study investigates the possibility of utilizing deep learning algorithm to predict motion intention of workers based on joint kinematic data. It is to secure motion intention-response simultaneity for efficient and safe worker-exoskeleton robot interaction. Background: Industrial exoskeleton robots are emerging as a solution to reduce work-related musculoskeletal disorders. The main key for successful development of an active exoskeleton robot is to understand and respond accurately to the wearer"s motion intention. The control system of a wearable robot needs to recognize in advance the exact moment to start activating its joints. Method: Sequential data for 6 representative motion types (walking, left lunge, right lunge, stoop, squat, Asian squat) of the lower extremity joints were collected using inertial measurement unit (IMU) sensors. A Long Short-Term Memory (LSTM)-based model, which is one of the representative deep learning techniques, was designed to train the data. The accuracy and speed of the model for predicting the motion intention of the subjects were analyzed. Results: The classification model showed 86% of accuracy in average which is satisfactory considering its small size of training data set. Using only the initial data from one motion cycle, it was confirmed that the model can predict which type of motion is in progress 75 to 100ms earlier than follow-up movement of the successive joint. Conclusion: This study confirmed the possibility of using artificial intelligence technique in predicting motion intention of workers based on earlier joint kinematic data. It is expected to develop a more sophisticate prediction model in the further study based on multimodal data sets gathered from various sensors such as EMG and Foot Pressure Sensor. Application: The prediction system for motion intention of workers based on deep learning algorithm could be a solution to secure the simultaneity in human-robot interaction.

목차

ABSTRACT
1. Introduction
2. Method
3. Results
4. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0