메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Young Eun Jeon (Yeungnam University) Suk-Bok Kang (Yeungnam University) Jung-In Seo (Andong National University)
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제34권 제2호
발행연도
2023.3
수록면
331 - 340 (10page)
DOI
10.7465/jkdi.2023.34.2.331

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recent climate disasters such as heat waves and heavy rains have emerged in the United States. These climate disasters are mainly caused by melting sea ice, an important indicator of maintaining the global average temperature. As sea ice continues to decrease due to global warming, this is the time when a strategy to respond to climate disasters caused by a decrease in the sea ice extent is more necessary than ever. As an aid to this, this study provides predictive modeling using a tree-based machine learning approach to predict the decrease in the Arctic sea ice extent. Specifically, the prediction is accomplished through three procedures: First, to impute the missing values of the Arctic sea ice extent, an imputation method using a Kalman smoothing technique is implemented. In addition, various features including the Fourier terms representing a seasonal variation are extracted and generated. Finally, to resolve the drawback of the tree-based machine learning techniques which cannot capture trends, a hybrid strategy based on the combination of the statistical and tree-based machine learning techniques is used. The provided hybrid strategy is thought to be a very good guideline for applying a tree-based machine learning technique to the Arctic sea ice extent.

목차

Abstract
1. Introduction
2. Methodology
3. Analysis
4. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-041-001322931