메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
신선한 (이화여자대학교 의과대학 목동병원 소아치과학교실) 김동현 (이화여자대학교 의과대학 목동병원 소아치과학교실)
저널정보
대한소아치과학회 대한소아치과학회지 대한소아치과학회지 제49권 제1호
발행연도
2022.2
수록면
85 - 94 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This retrospective study aimed to evaluate the difference in measurement between conventional orthodontic analysis and artificial intelligence orthodontic analysis in pediatric and adolescent patients aged 7 - 15 with the mixed and permanent dentition. A total of 60 pediatric and adolescent patients (30 mixed dentition, 30 permanent dentition) who underwent lateral cephalometric radiograph for orthodontic diagnosis were randomly selected. Seventeen cephalometric landmarks were identified, and 22 measurements were calculated by 1 examiner, using both conventional analysis method and deep learning-based analysis method. Errors due to repeated measurements were assessed by Pearson’s correlation coefficient. For the mixed dentition group and the permanent dentition group, respectively, a paired t-test was used to evaluate the difference between the 2 methods. The difference between the 2 methods for 8 measurements were statistically significant in mixed dentition group: APDI, SNA, SNB, Mandibular plane angle, LAFH (p < 0.001), Facial ratio (p = 0.001), U1 to SN (p = 0.012), and U1 to A-Pg (p = 0.021). In the permanent dentition group, 4 measurements showed a statistically significant difference between the 2 methods: ODI (p = 0.020), Wits appraisal (p = 0.025), Facial ratio (p = 0.026), and U1 to A-Pg (p = 0.001). Compared with the time-consuming conventional orthodontic analysis, the deep learning-based cephalometric system can be clinically acceptable in terms of reliability and validity. However, it is essential to understand the limitations of the deep learning-based programs for orthodontic analysis of pediatric and adolescent patients and use these programs with the proper assessment.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0