메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Graham Farr (Monash University)
저널정보
대한수학회 대한수학회지 대한수학회지 제54권 제4호
발행연도
2017.7
수록면
1,121 - 1,148 (28page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Go is an ancient game of great complexity and has a huge following in East Asia. It is also very rich mathematically, and can be played on any graph, although it is usually played on a square lattice. As with any game, one of the most fundamental problems is to determine the number of legal positions, or the probability that a random position is legal. A random Go position is generated using a model previously studied by the author, with each vertex being independently Black, White or Uncoloured with probabilities $q,q,1-2q$ respectively. In this paper we consider the probability of legality for two scenarios. Firstly, for an $N\times N$ square lattice graph, we show that, with $q=cN^{-\alpha}$ and $c$ and $\alpha$ constant, as $N\rightarrow\infty$ the limiting probability of legality is 0, $\exp(-2c^5)$, and 1 according as $\alpha<2/5$, $\alpha=2/5$ and $\alpha>2/5$ respectively. On the way, we investigate the behaviour of the number of captured chains (or chromons). Secondly, for a random graph on $n$ vertices with edge probability $p$ generated according to the classical Gilbert-Erd\H{o}s-R\'enyi model $\mathcal{G}(n;p)$, we classify the main situations according to their asymptotic almost sure legality or illegality. Our results draw on a variety of probabilistic and enumerative methods including linearity of expectation, second moment method, factorial moments, polyomino enumeration, giant components in random graphs, and typicality of random structures. We conclude with suggestions for further work.

목차

등록된 정보가 없습니다.

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0