메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김예슬 (한국항공우주연구원) 이광재 (한국항공우주연구원) 이선구 (한국항공우주연구원)
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제37권 제6호
발행연도
2021.12
수록면
1,931 - 1,942 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
최근 고해상도 광학 위성영상의 활용성이 강조되면서 이를 이용한 지표 모니터링 연구가 활발히 수행되고 있다. 그러나 고해상도 위성영상은 낮은 시간 해상도에서 획득되기 때문에 그 활용성에 한계가 있다. 이러한 한계를 보완하기 위해 서로 다른 시간 및 공간 해상도를 갖는 다중 위성영상을 융합해 높은 시공간 해상도의 합성 영상을 생성하는 시공간 자료 융합을 적용할 수 있다. 기존 연구에서는 중저해상도의 위성영상을 대상으로 시공간 융합 모델이 개발되어 왔기 때문에 고해상도 위성영상에 대한 기개발된 융합 모델의 적용성을평가할 필요가 있다. 이를 위해 이 연구에서는 KOMPSAT-3A 영상과 Sentinel-2 영상을 대상으로 기개발된 시공간 융합 모델의 적용성을 평가하였다. 여기에는 예측을 위해 사용하는 정보가 다른 Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM)과 Spatial Time-series Geostatistical Deconvolution/Fusion Model (STGDFM)을 적용하였다. 연구 결과, 시간적으로 연속적인 반사율 값을 결합하는 STGDFM의 예측 성능이 ESTARFM 보다 높은 것으로 나타났다. 특히 KOMPSAT 영상의 낮은 시간 해상도로 같은 시기에서KOMPSAT 및 Sentinel-2 영상을 동시에 획득하기 어려운 경우, STGDFM의 예측 성능 향상이 더욱 크게 나타났다. 본 실험 결과를 통해 연속적인 시간 정보를 결합해 상대적으로 높은 예측 성능을 가지는 STGDFM을 이용해 낮은 재방문 주기로 인한 고해상도 위성영상의 한계를 보완할 수 있음을 확인하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0