메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
임영우 (국민대학교) 엄지연 (국민대학교) 곽기영 (국민대학교)
저널정보
한국지능정보시스템학회 지능정보연구 지능정보연구 제29권 제1호
발행연도
2023.3
수록면
307 - 325 (19page)

이용수

DBpia Top 10%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
코로나19 팬데믹의 장기화로 인해 실내 생활에 지쳐가는 사람들이 우울감, 무기력증 등을 해소하기 위해 근거리의 산과 국립공원을 찾는 빈도가 폭발적으로 증가하였다. 자연으로 나온 수많은 사람들이 오가는 걸음을 멈추고 숨을 돌리며 쉬어가는 장소가 있는데 바로 약수터이다. 산이나 국립공원이 아니더라도 근린공원 또는 산책로에서도 간간이 찾아볼 수 있는 약수터는 수도권에만 약 6백여개가 위치해 있다. 하지만 불규칙적이고 수작업으로 수행되는 수질검사로 인해 사람들은 실시간으로 검사 결과를 알 수 없는 상태에서 약수를 음용하게 된다. 따라서 본 연구에서는 약수터 수질에 영향을 미치는 요인을 탐색하고 다양한 곳에 흩어져 있는 데이터를 수집하여 실시간으로 약수터 수질을 예측할 수 있는 모델을 개발하고자 한다. 데이터 수집의 한계로 인해 서울과 경기로 지역을 한정한 후 데이터 관리가 잘 이루어지고 있는 18개 시의 약 300여개 약수터를 대상으로 2015~2020년의 수질 검사 데이터를 확보하였다. 약수터 수질 적합 여부에 영향을 미칠 것으로 여겨지는 다양한 요인들 중 두 차례의 검토를 거쳐 총 10개의 요인을 최종 선별하였다. 최근 주목받고 있는 자동화 머신러닝 기술인 AutoML 기법을 활용하여 20여가지의 머신러닝 기법들 중 예측 성능 기준 상위 5개의 모델을 도출하였으며 그 중 catboost 모델이 75.26%의 예측 분류 정확도로 가장 높은 성능을 가지고 있음을 확인하였다. 추가로 SHAP 기법을 통해 분석에 사용한 변인들이 예측에 미치는 절대적인 영향력을 살펴본 결과 직전 수질 검사에서 부적합 판정을 받았는지 여부가 가장 중요한 요인이었으며 그 외 평균 기온, 과거 연속 2번 수질 부적합 판정 기록 유무, 수질 검사 당일 기온, 약수터 고도 등이 수질 부적합 여부에 영향을 미치고 있음을 확인하였다.

목차

1. 서론
2. 이론적 배경
3. 연구방법
4. 실증분석 결과
5. 결론 및 시사점
참고문헌(References)
Abstract

참고문헌 (43)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0