메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
신인준 (한양대학교) 이규혜 (한양대학교)
저널정보
복식문화학회 복식문화연구 복식문화연구 제23권 제3호
발행연도
2015.6
수록면
498 - 511 (14page)
DOI
http://dx.doi.org/10.7741/rjcc.2015.23.3.498

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This paper examines advertising images of fashion brands in vertical social network site (SNS) from the viewpoints of message strategies. Vertical social network sites are types of social curation systems applied to social networking, where information is selected, organized, and maintained. Fashion brands communicate with consumers by presenting images on vertical SNSs, anticipating improvements in brand image, popularity, and loyalty. Those images portray content for particular brands and seasonal concepts, thus creating paths for product sales information. Marketing via SNSs corresponds to relationship marketing, which refers to long-term interrelationship and value augmentation between the company and consumer, and viral advertising, which relies on word of mouth distribution via social network platforms. Taylor’s six-segment message strategy wheel, often used for analyzing viral ads, was applied to conduct a content analysis of the images. A total of 2,656 images of fashion brands advertised on Instagram were selected and analyzed. Results indicated that brand values were somewhat related to the number of followers. Follower rankings and comment rankings were also correlated. In general, fashion brands projected sensory messages most often. Acute need and rational messages were less common than other messages. Sports brands and luxury brands presented sensory messages, whereas fast fashion brands projected routine images most often. Fashion brands promoted on vertical SNSs should portray advertising images that combine message strategies.

목차

등록된 정보가 없습니다.

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0