메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국통계학회 응용통계연구 응용통계연구 제30권 제4호
발행연도
2017.8
수록면
603 - 613 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 들어 많은 사람들이 자신의 관심사를 SNS에 게시하거나 인터넷과 컴퓨터의 기술 발달로 디지털 형태의 문서저장이 가능하게 됨으로써 생성되는 텍스트 자료의 양이 폭발적으로 증가하게 되었다. 이에 따라 수많은 문서 자료로부터 가치 있는 정보를 창출하기 위한 기술의 요구 또한 증가하고 있다. 그러나 대부분 비정형 형태로 구성되어 있는 텍스트 기반의 자료는 기존의 통계 분석이나 데이터 마이닝 기법을 적용하기에 부적합하기 때문에 텍스트 마이닝 기법이 사용되고 있다. 본 연구에서는 비정형 자료 분석 기법 중 하나인 텍스트 마이닝 기법으로 기상청 기상연감 자료를 분석하였다. 먼저 전처리 과정을 통하여 용어사전을 구축하고, 용어-문서 행렬을 생성하였다. 그리고 이것을 사용하여 연도별 용어 빈도수를 계산하고, 자주 나타나는 단어들에 대하여 상대도수의 변화를 관찰하였다. 또한 회귀 분석 기법을 사용하여 증가추세와 감소추세를 보이는 용어들을 파악하였다. 이러한 분석으로 기상청 기상연감 문서에서의 트렌드를 파악하고, 이를 통해 이슈가 되었던 기상 관련 소식과 기상현황, 그리고 기상청이 중점으로 하고 있는 업무 현황의 트렌드를 파악하였다. 본 연구를 통해 기상업무 분석 및 효율화에 도움을 주고 기상정책에 반영할 수 있는 유용한 정보를 이끌어내고자 하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-310-001586533