메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최영재 (Chung-Ang Univ.) 배강우 (Chung-Ang Univ.) 정용기 (Chung-Ang Univ.) 문현준 (Dankook Univ.) 문진우 (Chung-Ang Univ.)
저널정보
한국생태환경건축학회 KIEAE Journal KIEAE Journal Vol.23 No.2(Wn.120)
발행연도
2023.4
수록면
23 - 29 (7page)
DOI
10.12813/kieae.2023.23.2.023

이용수

DBpia Top 10%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Purpose: This study aimed to develop an adaptive ventilation control algorithm for occupant-centric control (OCC). The control algorithm utilizes a real-time indoor carbon dioxide concentration prediction model that reflects occupant information and is continuously updated through daily learning. Method: The prediction model was developed using a long short-term memory (LSTM) learning algorithm based on data obtained from a living lab. The indoor CO2 concentration after 5 minutes was predicted through the data of the past 1 hour, and the prediction accuracy was evaluated with the test data. The adaptive ventilation control algorithm, which incorporates the prediction model, was then applied to the living lab for experiments to evaluate its real-time prediction accuracy, adaptability, and control performance. Result: As a result of the performance evaluation of the predictive model, the coefficient of variation of the root mean squared error (CVRMSE) was 1.78% and the R2 was 0.97. The adaptability evaluation over four days presented an improvement in CVRMSE from 1.78% to 1.13%, which is approximately 36.52% improvement from the initial performance. During the experiment with the adaptive ventilation control algorithm, the accuracy decreased slightly with a CVRMSE of 2.90% and R2 of 0.98, likely due to frequent ventilation control leading to large data variations. Despite short period of the indoor carbon dioxide concentration exceeding 1,000 ppm, the control was effective. According to the results, it is expected that providing comfortable indoor air quality at all times can be achieved by improving the optimal control cycle and supplementing data learning for various control modes in future research.

목차

ABSTRACT
1. 서론
2. 연구 방법
3. 성능평가
4. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-610-001359213