메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김준호 (국민대학교) 신용준 (강원대학교) 안현철 (국민대학교)
저널정보
한국지능정보시스템학회 지능정보연구 지능정보연구 제29권 제3호
발행연도
2023.9
수록면
19 - 36 (18page)

이용수

DBpia Top 0.5%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
정보통신기술의 발전으로 인해 누구나 쉽게 정보를 생산, 유포할 수 있게 되면서, 이를 악용하여 의도적으로 유포하는 거짓 정보인 가짜뉴스가 새로운 문제로 대두되기 시작하였다. 초기에 텍스트 방식으로 주로 전파되던 가짜뉴스는 점차 진화하여 이제는 멀티미디어 형식으로 퍼지고 있다. 유튜브는 2005년에 설립된 이후 세계 최고의 동영상 플랫폼으로 성장하면서 전 세계 사람들이 대부분 이용하고 있다. 하지만 유튜브는 가짜뉴스가 퍼지는 주요 창구가 되며 사회적인 문제를 일으키고 있다. 유튜브의 가짜뉴스를 탐지하기 위하여 다양한 학자들이 연구를 진행해 왔다. 가짜뉴스 탐지 연구에는 콘텐츠 기반의 접근과 배경정보 기반의 접근이 존재하는데 기존 가짜뉴스 연구와 유튜브의 가짜뉴스 탐지 연구를 살펴보면 콘텐츠 기반의 접근이 다수를 차지하고 있다. 본 연구에서는 콘텐츠 기반의 가짜뉴스 탐지가 아닌 배경정보 기반의 가짜뉴스 탐지기법을 제안하는데, 그 중에서도 유튜브에서 제공하는 관련 동영상 정보를 활용하여 가짜뉴스를 탐지하는 방법을 제안하고자 한다. 구체적으로 관련 동영상에서 얻은 정보와 원본 동영상에서 얻은 정보를 임베딩 기술인 Doc2vec을 이용하여 벡터화 한 후, 딥러닝 네트워크인 합성곱 신경망(CNN)을 통하여 가짜뉴스를 판별하고자 하였다. 실증분석 결과 제안 기법은 기존의 콘텐츠 기반으로 유튜브 가짜뉴스를 탐지하는 접근에 비해 보다 우수한 예측 성능을 보임을 확인하였다. 이러한 본 연구의 제안 기법은 파급력이 높은 유튜브 상에서 유포되는 가짜뉴스의 전파를 사전에 예방함으로써, 우리 사회를 보다 안전하고 신뢰할 수 있도록 만드는데 기여할 수 있을 것으로 기대한다.

목차

1. 서론
2. 이론적 배경
3. 연구모델
4. 실증 분석
5. 결론
참고문헌(References)
Abstract

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088055292