메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
박건혁 (포항공과대학교) Lee Jong Young (The Catholic University of Korea) 이수영 (포항공과대학교) 정일주 (포항공과대학교) 박서연 (Cell Death Disease Research Center College of Medicine The Catholic University of Korea Seoul Republic of Korea) 김진원 (가톨릭대학교) 남선아 (가톨릭대학교(성의교정) 세포사멸질환연구센터) Kim Hyung Wook (Department of Internal Medicine College of Medicine The Catholic University of Korea Seoul Republic of Korea) 김용균 (가톨릭대학교) 이승철 (포항공과대학교)
저널정보
대한신장학회 Kidney Research and Clinical Practice Kidney Research and Clinical Practice Vol.42 No.1
발행연도
2023.1
수록면
75 - 85 (11page)
DOI
10.23876/j.krcp.22.017

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background: Kidney organoids derived from human pluripotent stem cells (hPSCs) contain multilineage nephrogenic progenitor cells andcan recapitulate the development of the kidney. Kidney organoids derived from hPSCs have the potential to be applied in regenerative medicineas well as renal disease modeling, drug screening, and nephrotoxicity testing. Despite biotechnological advances, individual differencesin morphological and growth characteristics among kidney organoids need to be addressed before clinical and commercial application. Inthis study, we hypothesized that an automated noninvasive method based on deep learning of bright-field images of kidney organoids canpredict their differentiation status.Methods: Bright-field images of kidney organoids were collected on day 18 after differentiation. To train convolutional neural networks(CNNs), we utilized a transfer learning approach. CNNs were trained to predict the differentiation of kidney organoids on bright-field imagesbased on the messenger RNA expression of renal tubular epithelial cells as well as podocytes.Results: The best prediction model was DenseNet121 with a total Pearson correlation coefficient score of 0.783 on a test dataset. W classifiedthe kidney organoids into two categories: organoids with above-average gene expression (Positive) and those with below-average geneexpression (Negative). Comparing the best-performing CNN with human-based classifiers, the CNN algorithm had a receiver operating characteristic-area under the curve (AUC) score of 0.85, while the experts had an AUC score of 0.48.Conclusion: These results confirmed our original hypothesis and demonstrated that our artificial intelligence algorithm can successfully recognizethe differentiation status of kidney organoids.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0