메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한신경과학회 Journal of Clinical Neurology Journal of Clinical Neurology 제19권 제3호
발행연도
2023.5
수록면
270 - 279 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background and Purpose It is challenging to detect Parkinson’s disease (PD) in its early stages, which has prompted researchers to develop techniques based on machine learning methods for detecting PD. However, previous studies did not fully incorporate the slow progression of PD over a long period of time nor consider that its symptoms occur in a time-sequential manner. Contributing to the literature on PD, which has relied heavily on cross-sectional data, this study aimed to develop a method for detecting PD early that can process time-series information using the long short-term memory (LSTM) algorithm. Methods We sampled 926 patients with PD and 9,260 subjects without PD using medicalclaims data. The LSTM algorithm was tested using diagnostic histories, which contained the diagnostic codes and their respective time information. We compared the prediction power of the 12-month diagnostic codes under two different settings over the 4 years prior to the first PD diagnosis. Results The model that was trained using the most-recent 12-month diagnostic codes had the best performance, with an accuracy of 94.25%, a sensitivity of 82.91%, and a specificity of 95.26%. The other three models (12-month codes from 2, 3, and 4 years prior) were found to have comparable performances, with accuracies of 92.27%, 91.86%, and 91.81%, respectively. The areas under the curve from our data settings ranged from 0.839 to 0.923. Conclusions We explored the possibility that PD specialists could benefit from our proposed machine learning method as an early detection method for PD.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0