메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이승주 (인하대학교 인공지능융합연구센터) 안석호 (인하대학교) 이의종 (충북대학교) 서영덕 (인하대학교)
저널정보
한국스마트미디어학회 스마트미디어저널 스마트미디어저널 제12권 제4호
발행연도
2023.5
수록면
27 - 40 (14page)
DOI
https://dx.doi.org/10.30693/SMJ.2023.12.4.27

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
많은 추천 시스템 연구에서는 다양한 이종 데이터를 상호 호환적으로 통합하여 추천 시스템의 고질적인 데이터 부족 문제를 해결하고자 한다. 하지만, 지식 그래프를 활용하여 이종 데이터의 통합을 달성한 추천 시스템 연구는 거의 없으며, 대부분 연구에서는 기구축된 지식 그래프 상의 개체 간 연결이 명시적 관계로만 구성되어있다는 한계가 존재한다. 본 논문에서는 이종 데이터의 통합을 위해 다중 지식 베이스로부터 추출한 데이터 간 관계 모델링을 수행하고, 이를 통해 지식 그래프를 확장하는 방법을 제안한다. 또한, 딥러닝 기반의 잠재적 관계 모델링을 통해 지식 그래프 상 개체 간 관계 정보의 신뢰성을 높이고자 한다. 본 논문에서 제안하는 확장된 지식 그래프를 사용하면 개체의 특성 벡터 품질이 개선되고, 최종적으로 예측된 사용자 선호도의 정확성을 높일 수 있다. 또한, 실험을 통해 확장된 지식 그래프 기반 추천 정확도가 기존 지식 그래프 기반 추천 정확도에 비해 향상되었음을 확인하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0