메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
송채안 황진수 (세종대학교)
저널정보
한국조리학회 Culinary Science & Hospitality Research Culinary Science & Hospitality Research Vol.29 No.11(Wn.160)
발행연도
2023.11
수록면
117 - 127 (11page)
DOI
10.20878/cshr.2023.29.11.012

이용수

DBpia Top 5%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently, the number of consumers who prefer eco-friendliness due to global environmental pollution has been increasing, and AI food scanners have been developed based on artificial intelligence and big data to reduce food waste, the main culprit of environmental pollution. However, there is no existing research on eco-friendly AI food scanners. Therefore, this study attempted to propose how the sub-factors of the eco-friendly psychological benefits of AI food scanners are divided into warm glow, natural experience, and self-expression benefits and affect the image drawn. Furthermore, a hypothesis was established on how the green image affects word of mouth intention and additional cost payment intention. A total of 302 samples collected through online surveys were tested using AMOS 23.0. As a result of the study, the warm glow and self-expression benefits of psychological benefit factors have a positive effect on green images, and green images have a positive effect on word of mouth intention and additional cost payment intention. Unlike previous studies, this study was the first to confirm the relationship between eco-friendly psychological benefits and green images in the field of AI food scanners, which is expected to suggest academic expansion. It also suggested that the public"s interest and participation should be induced by acting as a warm glow among eco-friendly psychological benefit factors, such as green influencers.

목차

ABSTRACT
1. 서론
2. 이론적 배경
3. 연구방법
4. 실증분석
5. 결론
REFERENCES

참고문헌 (65)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0