메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
윤석현 (서울시립대학교) 양정직 (한국자동차연구원) 김청준 (한국자동차연구원) 황면중 (서울시립대학교)
저널정보
제어로봇시스템학회 제어로봇시스템학회 논문지 제어로봇시스템학회 논문지 제29권 제12호
발행연도
2023.12
수록면
1,030 - 1,038 (9page)
DOI
10.5302/J.ICROS.2023.23.0140

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper proposes an algorithm for detecting and estimating the pose of top objects in a complex environment where thin metal circular plates are randomly stacked. In complex environments where multiple instances of the same object are randomly stacked, the robot needs to detect and compare objects to identify the top ones for grasping. Our approach involves a combination of deep learning-based instance segmentation and an overlap handling algorithm for precise top object detection. Subsequently, leveraging three-dimensional geometric data, we estimate the object’s pose by determining its plane. To validate the proposed algorithm, we constructed two environments consisting of objects with different sizes and thicknesses. The first experiment quantitatively validated the object detection and overlap handling algorithm. The second experiment quantitatively compared different plane estimation algorithms. The third experiment quantitatively compared the pose of objects using the G-ICP (Generalized Iterative Closest Point) algorithm and the proposed algorithm against the ground truth pose. Additionally, we performed a qualitative comparison by visualizing the poses estimated by each algorithm in the images. In the experimental results, the overlap handling algorithm had an average success rate of 84.21%. Additionally, pose estimation using G-ICP before plane estimation frequently resulted in issues like drift in the center point and frequent misalignment with areas other than the object. On the other hand, pose estimation using G-ICP after plane estimation and the proposed algorithm yielded similar performance with average ADD-S values of 6mm or less. However, the pose estimated using the proposed algorithm resulted in a minimum 0.25x reduction in execution time compared to the G-ICP algorithm.

목차

Abstract
Ⅰ. 서론
Ⅱ. 상단 객체 검출과 자세 추정
Ⅲ. 실험 및 검증
Ⅳ. 결론
REFERENCES

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0