메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Florian Diepers (University of Applied Sciences Niederrhein) Dominik Polke (University of Applied Sciences Niederrhein) Elmar Ahle (University of Applied Sciences Niederrhein) Dirk Söffker (University of Duisburg-Essen)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2023
발행연도
2023.10
수록면
54 - 59 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Most advanced control methods require a sufficiently accurate model of the system to be controlled. These models are becoming increasingly difficult to generate due to the increasing complexity of the underlying systems. To address this problem, data-driven models can be used. These kind of models are trained based on data of the dynamic system. They can be used for controller design and also be applied directly to control the system. In this work, a stochastic model predictive controller (SMPC) with a Gaussian process model (GP) is utilized. The main advantage of GPs is the construction of a dynamic system model with the possibility of determining the uncertainty of its own prediction. In this contribution, three different utilizations of prediction uncertainty in SMPC are compared. Additionally, two different implementations of dynamic GPs, nonlinear autoregressive exogenous GPs (GP-NARX) and a state-space model based on GPs (GP-SSM), are considered. All six test cases are compared based on an evaluation criterion that describes the resulting control performance. A simulated inverted pendulum, a benchmark for nonlinear and unstable systems, is used as test system. In this work, the combinations of different dynamic GPs and the application of their uncertainty prediction in SMPC are evaluated and compared.

목차

Abstract
1. INTRODUCTION
2. DYNAMIC SYSTEM MODELINGWITH GAUSSIAN PROCESSES
3. STOCHASTIC MODEL PREDICTIVE CONTROL
4. IMPLEMENTATION OF THE SYSTEM AND DIFFERENT CONTROLLER
5. RESULTS AND DISCUSSION
6. SUMMARY AND OUTLOOK
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088263927