메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jiayan Duan (Yanching Institute of Technology) Hongwei Ma (Yanching Institute of Technology) Junxia Wang (Yanching Institute of Technology)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.12 No.6
발행연도
2023.12
수록면
466 - 471 (6page)
DOI
10.5573/IEIESPC.2023.12.6.466

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In the context of cross-cultural communication, translation between languages has become increasingly important. Based on automatic Chinese–English translation, this study examined the processing of out-of-vocabulary (OOV) words. First, this paper briefly introduces two basic translation models: seq2seq and Transformer. Second, we propose a semantic-based OOV processing method, which replaces OOV words with the most similar words by calculating the semantic similarity of word vectors and then uses the source-language sentences with the replaced words to train a translation model. Compared to the seq2seq model, the Bilingual Evaluation Understudy (BLEU) values of the Transformer model were higher (37.26 for the NIST06 dataset and 30.75 for the NIST08 dataset). After OOV processing, retaining low-frequency OOV words was conducive to the improvement of BLEU scores, which were increased by 0.63 and 0.09 for NIST06 and NIST08 for the Transformer model, respectively. This shows the effectiveness of the OOV processing method. The OOV processing method could be applied to automatic Chinese–English translation.

목차

Abstract
1. Introduction
2. Translation Algorithm for Out-of-vocabulary Words
3. Results and Analysis
4. Conclusion
References

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0