메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박상언 (경기대학교) 강주영 (아주대학교)
저널정보
한국지능정보시스템학회 지능정보연구 지능정보연구 제29권 제4호
발행연도
2023.12
수록면
287 - 308 (22page)

이용수

DBpia Top 0.5%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
ChatGPT는 2022년 11월에 서비스를 시작한 후 급격하게 사용자 수가 늘어나며 인공지능의 역사에서 큰 전환점을 가져올 정도로 사회 곳곳에 많은 영향을 미치고 있다. 특히 ChatGPT와 같은 거대언어모델의 추론 능력은 프롬프트 엔지니어링 기법을 통해 빠른 속도로 그 성능이 발전하고 있다. 인공지능을 워크플로우에 도입하려고 하는 기업이나 활용하려고 하는 개인에게 이와 같은 추론 능력은 중요한 요소로 고려될 수 있다. 본 논문에서는 거대언어모델에서 추론을 가능하게 한 문맥내 학습에 대한 이해를 시작으로 하여 프롬프트 엔지니어링의 개념과 추론 유형 및 벤치마크 데이터에 대해 설명하고, 이를 기반으로 하여 최근 거대언어모델의 추론 성능을 급격히 향상시킨 프롬프트 엔지니어링 기법들에 대해 조사하고 발전과정과 기법들 간의 연관성에 대해 상세히 알아보고자 한다.

목차

1. 서론
2. 거대언어모델(LLM)과 문맥내 학습
3. 추론을 위한 프롬프트 엔지니어링
4. 추론 성능 향상을 위한 프롬프트 엔지니어링 기법의 발전 과정
5. 결론
참고문헌(References)
Abstract

참고문헌 (28)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-089215130