메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정상윤 (고려대학교) 진성현 (삼성전자) 김희석 (고려대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제34권 제3호
발행연도
2024.6
수록면
379 - 392 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
데이터의 급속한 증가와 함께 저장 공간 절약과 데이터 전송의 효율성이 중요한 문제로 대두되면서, 데이터 압축기술의 효율성 연구가 중요해졌다. 무손실 알고리즘은 원본 데이터를 정확히 복원할 수 있지만, 압축 비율이 제한적이며, 손실 알고리즘은 높은 압축률을 제공하지만 데이터의 일부 손실을 수반한다. 이에 딥러닝 기반 압축 알고리즘, 특히 오토인코더 모델이 데이터 압축 분야에서 활발한 연구가 진행됐다. 본 연구에서는 오토인코더를 활용한 새로운 부채널 분석 데이터 압축기를 제안한다. 제안하는 부채널 데이터 대상 압축기는 부채널데이터 특성을 잘 유지할 뿐만 아니라, 기존의 널리 사용되는 Delfate 압축방식 대비 높은 압축률을 보인다. 로컬 연결 레이어를 사용한 인코더는 부채널 데이터의 시점별 특성을 효과적으로 보존하고, 디코더는 멀티 레이어 퍼셉트론을 사용하여 빠른 압축해제 시간을 유지한다. 상관 전력 분석을 통해 제안된 압축기가 부채널 데이터의 특성을 손실 없이 데이터 압축이 가능을 증명하였다.

목차

요약
ABSTRACT
I. 서론
II. Background
III. 딥러닝 기반 부채널 데이터 압축 기법
IV. 실험 결과
V. 결론
References

참고문헌 (55)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-089926932