메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Guiheng Zhi (Guangxi Arts University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.13 No.3
발행연도
2024.6
수록면
209 - 214 (6page)
DOI
10.5573/IEIESPC.2024.13.3.209

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In recent years with continuous development of the computer vision field, there has been an increasing demand for fast and accurate recognition of human movement, especially in sports. This paper researches ballet movements, which are recognized and analyzed using a convolutional neural network (CNN) based on deep learning. Training of the CNN is improved by particle swarm optimization (PSO). Then, 1,000 ballet videos are used as a dataset to compare optimized CNN, traditional CNN, and support vector machine (SVM) methods. The results show that the improved CNN converged fastest, stabilizing after about five iterations, whereas the traditional CNN method took approximately 20 iterations to stabilize. Additionally, after convergence, error in the improved CNN was smaller than from the traditional CNN. The average recognition accuracy of the SVM method was 84.17%, with a recognition time of 3.32 seconds; for the traditional CNN method, it was 90.16% with a recognition time of 2.68 s; and for the improved CNN method, it was 95.66% with a recognition time of only 1.35 s.

목차

Abstract
1. Introduction
2. Dance Movement Recognition Methods
3. Experiment Analysis
4. Discussion
5. Conclusion
References

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-151-24-02-090061639