메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김민서 (Hanyang University) 손아람 (Hanyang University) 이수기 (Hanyang University)
저널정보
대한국토·도시계획학회 국토계획 國土計劃 第59卷 第5號(通卷 第279號)
발행연도
2024.10
수록면
59 - 77 (19page)
DOI
10.17208/jkpa.2024.10.59.5.59

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently, with the worldwide increase in the number of single-person households living alone, new words such as “Singlization,” which denotes people living alone, and “Single Consumer,” which denotes single consumers living alone, have emerged. Similar to the increase in single-person households observed worldwide, the ratio of single-person households to total households is rapidly increasing in Korea, and the structure of households is also changing. Accordingly, it was ascertained that customized tweezers support should be promoted, based on information such as preferred residential and neighborhood environmental factors by age group, and the characteristics of single-person households and their influencing factors were identified. After confirming the existence of spatial autocorrelation to understand the dense living pattern of single-person households, the spatial statistical model was used to understand the factors affecting the density of single-person households. The analysis results are as follows. First, the elderly single-person households are in areas with a high crime risk index, indicating low residential stability. Second, the supply of housing has a positive effect on the number of households having 'Haeng Bok' and rental housing, in the young and elderly, respectively. Thus, this study attempted to identify densely populated areas by age group and common regional characteristics related to the physical environment, and socioeconomic and policy variables.

목차

Abstract
Ⅰ. 서론
Ⅱ. 선행연구 고찰
Ⅲ. 연구 방법론
Ⅳ. 분석 결과
Ⅴ. 결론
인용문헌 References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-091106570