메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Yuin Moon (Pohang University of Science and Technology (POSTECH)) Seokwoo Kim (Pohang University of Science and Technology (POSTECH)) Dong Gu Choi (Pohang University of Science and Technology (POSTECH))
저널정보
대한산업공학회 대한산업공학회 추계학술대회 논문집 2024년 대한산업공학회 추계학술대회
발행연도
2024.10
수록면
134 - 157 (24page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
As on-demand platforms continue to grow, managing workforce uncertainty due to gig workers has become increasingly challenging, leading to extensive research into scheduling solutions. Many platforms utilize hybrid and centralized scheduling with pre-scheduled couriers to reduce operational uncertainties;
however, these couriers still have uncertainty in their work participation. In this study, we propose a courier staffing and scheduling model that captures this uncertainty by learning it through a single-layer perceptron model and incorporating it into a mathematical optimization model via a technology matrix.We also consider the differing show-up rates and job proficiencies of committed couriers-those dedicated to a single platform-and ad-hoc couriers. To mitigate the increased computational complexity caused by the technology matrix, we applied asynchronous projective hedging algorithm and scenario bundling to enhance convergence speed. We validated the economic efficiency of our proposed model using a work participation simulator based on real-world data. This validation showed that operating costs
were reduced by around 4%, and the frequency of service disruptions due to workforce shortages also decreased.

목차

Abstract
1. Introduction
2. Literature Review
3. Problem Formulation
4. Methodology
5. Numerical Experiments
6. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-091160734