메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
배광호 (한국한의학연구원) 이영섭 (한국한의학연구원) 박만영 (한국한의학연구원)
저널정보
한약정보연구회 한약정보연구회지 한약정보연구회지(韓藥情報硏究會誌) 제12권 제1호
발행연도
2024.6
수록면
71 - 82 (12page)
DOI
10.22674/KHMI-12-1-6

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study aimed to investigate the visiting patterns, comorbidities, and insured herbal extract usage of common cold patients aged 20 years or older who visited Korean medical clinics and hospitals. To understand the characteristics of individuals diagnosed with the common cold (Korean Standard Classification of Disease code: J00), we utilized the National Health Insurance Service sample cohort database, which encompasses 1 million individuals representing approximately 2% of the South Korean population and contains their health insurance claim information. We analyzed data from 2010 to 2019, focusing on the primary and secondary diagnoses for J00, the top 19 comorbidities (>1%), and the 15 most frequently prescribed insured herbal extracts. Between 2010 and 2019, the number of people diagnosed with J00 increased by 31.31%, from 7,090 to 9,310, and the number of visit days increased by 133.74%, from 16,075 to 37,574 days. The primary diagnosis rate of J00 decreased from 63.4% in 2011 to 47.8% in 2019. The most common comorbidity was dorsalgia (15.3%), followed by other and unspecified soft tissue disorders (9.7%) and functional dyspepsia (8.2%). Socheongryong-tang was the most frequently prescribed insured herbal extract (21.3%), followed by Samso-eum (19.0%), Yeonkyopaedok-san (14.0%), Gumiganghwal-tang (7.9%), Insampaedok-san (7.4%), and Galgeun-tang (5.9%). Based on our findings, we recommend further clinical research and the development of related healthcare policies to enhance the effectiveness and accessibility of Korean Medicine (KM) for the treatment of the common cold.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0