메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
정광태 (한국기술교육대학교) 황수인 (한국기술교육대학교)
저널정보
대한인간공학회 대한인간공학회 학술대회논문집 2024 대한인간공학회 추계학술대회
발행연도
2024.11
수록면
347 - 352 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Objective: This study aims to review the current trends in UX/UI design research utilizing EEG technology. Background: User experience (UX) and user interface (UI) design are key elements in the development of products and services. As EEG-based analysis of biometric signals gains traction, it offers valuable insights into user behavior and cognitive states. This research seeks to explore how EEG is applied in UX/UI design, identify its limitations, and propose solutions to enhance its effectiveness. Method: In this study, it was conducted a systematic review of relevant studies published between 2014 and 2024. Various UX/UI evaluation methodologies and the applicability of EEG data were analyzed using the PICO framework. The review identifies existing research gaps and proposes future directions for EEG-based UX/UI design research. Results: In this study, we analyzed research trends on the use of EEG in the UX/UX field using the PICO framework. In addition, we presented methods of using EEG in the UX/UX field, limitations of the research, and suggestions. Conclusion: The findings indicate that simplified and intuitive design elements can enhance user engagement and reduce cognitive load. EEG-based analysis proves to be a powerful tool for quantitative usability testing of the impact of design factors on user experience. However, challenges such as limited demographic diversity, EEG data analysis complexity, and controlled laboratory settings remain. Addressing these challenges will require expanding research to diverse user groups, utilizing wireless EEG devices, and developing real-time data analysis capabilities. Application: This study provides insights into the potential of EEG in UX/UI design, serving as a reference for future research in EEG-based UX/UI design and evaluation.

목차

ABSTRACT
1. Introduction
2. Method
3. Results
4. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0