지원사업
학술연구/단체지원/교육 등 연구자 활동을 지속하도록 DBpia가 지원하고 있어요.
커뮤니티
연구자들이 자신의 연구와 전문성을 널리 알리고, 새로운 협력의 기회를 만들 수 있는 네트워킹 공간이에요.
이용수8
2015
Chapter 1. Introduction 11.1 Introduction 11.2 Background and previous works 41.2.1 External morphology 41.2.2 Wing morphology 51.2.3 Folding/unfolding characteristics 81.2.4 Wettability properties 81.2.5 Wing material properties 91.2.6 Wing stiffness 121.2.6.1 Flexural stiffness 121.2.6.2 Modal analysis 131.2.7 Wing kinematic 161.2.8 Wing aerodynamic 181.2.9 Force estimation 201.2.10 Artificial wing 201.2.11 Flapping wing MAV 221.3 Motivation and objective 24Chapter 2. Anisotropy and non-homogeneity of an Allomyrina Dichotoma beetle hind wing membrane 272.1 Introduction 272.2 Materials and methods 322.2.1 Sample preparation 322.2.2 Mini tensile testing system 372.2.3 ARAMIS® system 382.2.4 System calibration 402.2.5 Deformation and material property calculation 422.2.6 Poisson''s ratio calculation 462.3 Results 492.3.1 Morphological studies 492.3.2 Thickness 512.3.3 Mechanical properties of the membrane 522.3.4 Poisson''s ratio 562.4 Discussions 572.5 Summary 63Chapter 3. Fracture properties of the Allomyrina dichotoma beetle’s hind wing 653.1 Introduction 653.2 Materials and methods 673.2.1 Sample preparation 673.2.2 Experimental setup 693.3 Results 703.4 Discussions 723.5 Summary 74Chapter 4. Structural Characteristics of Allomyrina Dichotoma Beetle’s Hind Wings 754.1 Introduction 754.2 Materials and methods 774.2.1 Static test 774.2.1.1 Sample preparation 774.2.1.2 Experimental setup 784.2.2 Dynamic test 794.2.2.1 Sample preparation 794.2.2.2 Experimental setup 804.3 Results and discussions 824.3.1 Static test 824.3.2 Dynamic test 844.3.2.1 Natural frequency 844.3.2.2 Mode shapes 864.3.2.3 Damping ratio 874.4 Discussion 884.5 Summary 88Chapter 5. The stress stiffening effects on the asymmetric bending of the Allomyrina dichotoma beetle’s hind wing 905.1 Introduction 905.2 Materials and Methods 925.2.1 Morphology 925.2.2 Finite element modeling 935.2.3 Mesh generation 995.2.4 Model solution 995.3 Results 995.3.1 Stress stiffening effects 995.3.2 Effects of camber 1015.3.3 Effects of chordwise camber 1025.3.4 Effect of spanwise camber 1045.3.5 Role of membrane 1055.4 Discussion 1065.4.1 Stress stiffening effects 1065.4.2 Effects of camber 1075.4.3 Role of membrane 1115.5 Summary 112Chapter 6. Relationship between wingbeat frequency and resonant frequency of the wing in insects 1146.1 Introduction 1146.2 Materials and Methods 1176.2.1 Sample preparation 1176.2.2 Wing planform 1186.2.3 Wing loading 1186.2.4 Area density 1186.2.5 Mass ratio 1186.2.6 Wingbeat frequencies 1196.2.7 Natural frequency 1206.2.7.1. Base-excitation method 1206.2.7.2. Measurement method 1216.2.7.3 Experimental setup 1216.2.8 Statistics 1226.3 Results 1236.3.1 Morphological studies 1236.3.2 Wingbeat frequency 1266.3.3 Natural frequency 1276.3.4 Relationship between wingbeat frequencies and natural frequencies 1286.4 Discussion 1286.4.1 Morphological studies 1286.4.2 Wingbeat frequency 1296.4.3 Natural frequency 1326.4.4 Relationship between wingbeat frequencies and natural frequencies 1376.5 Summary 140Chapter 7. Static and dynamic characteristics of an artificial wing mimicking an Allomyrina Dichotoma beetle’s hind wing 1417.1 Introduction 1417.2 Materials and methods 1457.2.1 Artificial wing fabrication 1457.2.2 Static tests 1497.2.2.1 Flexural stiffness measurement 1497.2.2.2 Torsional stiffness measurement 1517.2.3 Dynamic test 1537.2.3.1 Base excitation method 1537.2.3.2 Measurement method 1547.2.3.3 Experimental setup 1557.3 Results and discussions 1567.3.1 Flexural stiffness 1567.3.2 Torsional stiffness 1617.3.3 Dynamic test 1637.3.3.1 Natural frequency 1637.3.3.2 Natural frequency 1657.3.3.3 Damping ratio 1667.3.4 Comparison between the static and dynamic measurements in terms of natural frequencies 1677.3.4.1 Bending resonant frequency 1677.3.4.2 Torsional resonant frequency 1687.3.5 Comparison between artificial wing and real wing 1707.3.5.1 Bending stiffness 1707.3.5.2 Natural frequency 1717.3.5.3 Mode shape 1727.4 Summary 175Chapter 8. Modal analysis of an artificial wing mimicking beetle’s hind wing by noncontact measurement technique 1768.1 Introduction 1768.2 Materials and methods 1778.2.1 Digital image correlation 1778.2.1.1 Basic concepts 1778.2.1.2 Cameras calibration 1798.2.1.3 The DIC method 1808.2.2 Mode shape construction 1828.2.2.1 Sample preparation 1828.2.2.2 Experiment and post processing 1838.3 Results and discussion 1858.3.1 Natural frequency 1858.3.2 Damping ratio 1868.3.3 Mode shapes 1868.4 Discussions 1908.5 Summary 191Chapter 9. Modal analysis using digital image correlation technique: An application to artificial wing mimicking beetle’s hind wing 1939.1 Introduction 1939.2 Materials and methods 1969.2.1 Base excitation method 1969.2.2 White noise excitation signal and correlation 1989.2.3 Experimental setup 1999.3 Results and discussions 1999.4 Summary 202Chapter 10. Conclusion Remarks and Future work 20310.1 Conclusion 20310.2 Main contribution 20610.3 Recommendations for Future Work 208
0