메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

이승규 (충남대학교, 忠南大學校 大學院)

지도교수
김재훈
발행연도
2019
저작권
충남대학교 논문은 저작권에 의해 보호받습니다.

이용수0

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (5)

초록· 키워드

오류제보하기
To cope with the uncertainties existing in an engineering product design, the failure probability methodology is used based on random variables. In this methodology, uncertainties are assumed as random variables and the failure criterion is expressed by the performance function. The failure region is a region where the performance function value is smaller than zero. The performance function includes random variables. The failure probability is obtained by integrating the joint probability density function of the random variables over the failure region.
Most of this integration usually be approximated by numerical computation. Among various numerical methods, the Monte Carlo simulation gives a relatively accurate numerical solution for nonlinear problems and it has an advantage of evaluating the error of the numerical solution. However, it consumes a lot of numerical costs.
The importance sampling technique and the Kriging metamodel application technique have been used to reduce the numerical cost of the Monte Carlo simulation. Several researchers have proposed a numerical calculation method combining the importance sampling and the Kriging metamodel. In this study, the improvement of the numerical method combining the importance sampling method and the Kriging metamodel is proposed.
The improvement of the importance sampling technique is related to the importance sampling function construction. In order to approximate an ideal importance sampling function, a kernel density function based on the points extracted from the failure region is implemented. Points are extracted in the failure region by the Metropolis-Hastings algorithm. With each point as a mean, kernels are assumed. In order to reduce numerical cost, kernels that are far from MPFPs(most probable failure points) are excluded. The MPFP has a large impact on the failure probability. A kernel density function is constructed based on kernels. The importance sampling density is assumed as a kernel density function.
The first improvement of the Kriging metamodel is about a scheme of adding experimental points. The performance function is approximated by the Kriging metamodel. Initially, the Kriging metamodel is constructed based on points extracted from the Metropolis-Hastings algorithm. The added experimental points of the Kriging metamodel are selected through a learning function. But, only points within a certain range are added as the experimental points of the Kriging metamodel.
The second improvement of the Kriging metamodel is about a stop criterion of adding experimental points. The more experimental points are added, the more accurate the Kriging metamodel, but the higher the numerical cost. Therefore, adding the experimental points to the Kriging metamodel should be terminated by the appropriate criterion. The parameter for evaluating the accuracy of the Kriging metamodel is presented focusing the importance region. The proposed methodology is verified by numerical examples.

목차

I. 서 론 1
1.1 연구배경 1
1.2 연구동향 6
1.3 연구목적 및 내용 13
II. 고장확률 계산 관련 기본 이론 15
2.1 고장확률 15
2.2. 몬테칼로 시뮬레이션(Monte Carlo simulation) 19
2.3. 중요도 추출법(Importance sampling) 25
2.4 적응적 중요도 추출법(Adaptive importance sampling) 28
2.5 크리깅 근사모델(Kriging metamodel) 39
III. 개선 방안 제안 46
3.1 통계거리를 고려한 중요도 추출함수의 커널 위치 선정 46
3.2 통계거리를 고려한 크리깅 근사모델 실험점 추가 50
3.3 크리깅 근사모델 최신화 종료 기준 57
3.4 고장확률 계산 절차 65
IV. 수치해석 및 고찰 68
4.1 선형 설계기준에 대한 고장확률 계산 및 결과 비교 68
4.2 비선형 설계기준에 대한 고장확률 계산 및 결과 비교 79
4.3 다중 설계기준에 대한 고장확률 계산 및 결과 비교 89
4.4 분산된 고장 영역에 대한 고장확률 계산 및 결과 비교 101
4.5 피로 수명에 대한 고장확률 계산 113
V. 결 론 121
참고 문헌 124
ABSTRACT 132

최근 본 자료

전체보기

댓글(0)

0