메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

김성훈 (영남대학교, 영남대학교 대학원)

지도교수
이종달
발행연도
2022
저작권
영남대학교 논문은 저작권에 의해 보호받습니다.

이용수27

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
This study aims to increase the performance of the U-NET model through training, effective acquisition of deep learning study data, and accurate true values. To this end, the filtering method applying the step-by-step deep learning algorithm was used to minimize the unclear analysis basis of the deep learning model, and efficient analysis judgment was conducted, and the following conclusions were obtained.



A) Performance comparison of U-NET model according to training data
- For the U-NET model using the period analysis extraction, the true value was analyzed to be 7.6% higher than the U-NET using the existing provided true value in detecting and improving the performance, along with the detection of dead trees with pine wilt disease using the U-NET algorithm. The cause of the degradation of U-NET detection performance is determined as follows.
- Since trees are expressed in vertical image shapes in orthoimages, it is difficult to identify conifers and broad-leaved trees, dead trees, autumn leaves according to seasons, and browning of leaves, which can lead to incorrect judgment.
- Therefore, it is judged that using the accurate true value of pine wilt disease, deadwood can increase the detection level, and the performance can be improved through the ''period analysis extraction true value'' data collection method.


B) Performance of U-NET model using period analysis extraction true value
- The precision of the U-NET model was 86.6% and 80.2% as a result of analyzing the U-NET model using the orthoimages provided by the KOFPI(Korea Forestry Promotion Institute) using the test verification image and the orthoimage of the Daegu Arboretum taken for model transference test. yielding more than 80% performance. However, in this study, it is impossible to calculate the TN value, making it difficult to analyze the accuracy.
- To construct a high-precision true value of dead trees, the method of constructing and utilizing location data analyzing dead trees removed by the time of orthoimages is suitable. If the performance is improved through more learning in the future, it is judged that the drone surveillance method using drone orthoimages and deep learning models can be used in the pine wilt disease disaster prevention project.

C) Performance comparison of model transference test and deep learning models
- In this study, the performance of the U-NET deep learning algorithm trained using high-precision true values was evaluated through model transference test.
- Also, the Mask R-CNN model algorithm was trained on the same training data to perform analysis and compare the performance of the two models.
- For model transference test, an orthoimage was produced by shooting an area damaged by pine wilt disease near the Daegu shooting range using a drone, and the recall rate (0.966) as a result of analysis with the U-NET model algorithm using the GeoServer program and precision (0.802) were obtained. In addition, the Mask R-CNN model algorithm obtained the precision of recall (0.864) and precision (0.750), and it was found that the U-NET model algorithm performed better by 5.2%p.
- However, compared to the U-NET algorithm, Mask R-CNN has a feature of detecting the complete shape by judging the shape and color of dead trees, so it is judged that more learning data and training are required.
- Therefore, it is expected that the performance and precision of the U-NET algorithm can be improved beyond that of the U-NET algorithm by verifying the analysis result data through deep learning and using it as learning data.

목차

제 1 장 서 론 1
1.1 연구배경 및 목적 1
1.1.1 연구의 배경 2
1.1.2 연구의 목적 5
1.2 연구의 내용 및 범위 6
제 2 장 이론적 고찰 10
2.1 드론을 이용한 소나무재선충병 예찰 10
2.1.1 드론의 정의 10
2.1.2 드론을 이용한 항공사진측량 기법 12
2.1.3 드론을 이용한 소나무재선충 예찰 방재 18
2.2 딥러닝 모델 22
2.2.1 객체 인식 22
2.2.2 시맨틱 분할(semantic segmentation) 25
2.3 U-NET 모델을 이용한 소나무재선충 의심 고사목 탐지 27
2.4 Mask R-CNN 모델을 이용한 소나무재선충 의심 고사목 탐지 30
2.5 객체검출 정확도 평가 31
2.6 선행연구 검토 33
2.7 연구의 차별성 및 고찰 38
제 3 장 학습데이터 구축 및 딥러닝 분석 42
3.1 연구개요 42
3.2 정사영상을 이용한 참값 학습데이터 구축 44
3.3 U-NET 딥러닝 모델 구축 49
3.3.1 U-NET 모델 설계 49
3.3.2 딥러닝 모델을 이용한 검지 정밀도 향상 53
3.4 학습데이터의 적용 57
3.4.1 기존 제공 참값을 이용한 U-NET 모델 분석 59
3.4.2 기간 분석 추출 참값을 이용한 U-NET 모델 분석 61
3.4.3 학습데이터 참값에 따른 딥러닝 모델 분석 정밀도 비교 63
제 4 장 딥러닝 모델의 모형전이검증 65
4.1 대상지 드론촬영 및 정사영상 제작 65
4.1.1 드론촬영 66
4.1.2 정사영상 제작 70
4.1.3 소나무재선충 고사목 현장조사 및 참값 데이터 구축 71
4.2 U-NET 모델을 이용한 딥러닝 분석 72
4.3 Mask R-CNN을 이용한 재선충 탐지 74
4.4 U-NET 모델과 Mask R-CNN모델의 정도 비교 76
제 5 장 결론 78
5.1 결론 78
5.2 연구의 한계 및 향후 연구과제 81
<참고문헌> 84

최근 본 자료

전체보기

댓글(0)

0