메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국HCI학회 한국HCI학회 학술대회 PROCEEDINGS OF HCI KOREA 2016 학술대회 발표 논문집
발행연도
2016.1
수록면
50 - 54 (5page)
DOI
10.17210/hcik.2016.01.50

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
We have developed a system which generates a 2D caricature face of a user by understanding his facial attribute. In recent, there have been many approaches to make a user caricature face. They, however, analyzed a face with a 2D sparse facial feature alignment method and it caused lack of his facial attribute information. In this research, we tried to automatically analyze the facial attribute of a user using a bilinear face model, enabling to make the caricature reflecting the user facial attribute. It also provides to change the facial expression of the caricature intuitively since it is parameterized by identity and expression parameters. When user gives his face image to the system, it reconstructs his 3D face model automatically without any user input. The result 3D face model is expressed as identity parameter. We mapped the identity parameter to facial attribute parameter space, which makes the system notice what kind of notable facial attributes the user face has. As emphasizing or reducing the expression power of remark facial attributes, the system makes the 3D face model reflect the facial attribute of the user dramatically. It also enables the user to change the facial expression of his caricature as changing the expression parameter values. As the 3D model of the user caricature is projected to the 2D space with a cartoon-like texture effect, user can get his own traditional caricature drawing.

목차

ABSTRACT
INTRODUCTION
RELATED WORK
BILINEAR FACE MODEL AND FACIAL ATTRIBUTE
3D FACE RECONSTRUCTION
CARRICATURE MAKING PROCESS
USER STUDY
CURRENT LIMITATION
CONCLUSION AND FUTURE WORK
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0