메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이재환 (서울대학교) 임혜원 (서울대학교) 김형주 (서울대학교)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회 컴퓨팅의 실제 논문지 정보과학회 컴퓨팅의 실제 논문지 제22권 제10호
발행연도
2016.10
수록면
479 - 487 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
음악 스트리밍 서비스의 대중화로 음악의 소유 없이 언제든 원하는 듣고 싶은 노래를 들을 수 있게 되었다. 넓어진 선택권은 역설적으로 노래를 선택하기 어렵게 만들었다. 이러한 선택의 어려움을 극복하기 위해 음악 추천에 대한 관심이 높아졌고 판도라와 Last.fm과 같은 상용 서비스뿐 아니라 음악 정보 검색 분야의 연구자들도 다양한 추천 시스템을 제안하였다. 내용 기반 필터링과 협업 필터링 방식이 주류인 기존의 추천 시스템은 음악 감상의 주요 요인인 맥락을 고려하지 않았다는 한계점을 지니고 있다. 본 논문에서는 음악을 선택하는 맥락 중 주요한 요인인 감정을 이용한 노래간 유사도 측정 방법을 제안하여 새로운 추천 시스템에 대한 가능성을 탐색한다. 노래의 감정 추출에 가사를 이용하였고 가사에서 노래의 구조도 추출해 노래의 의미적 분석을 시도하였다. 실험을 통해 제안한 모델이 기존의 추천 시스템에 비해 작은 계산 복잡성으로 기존 모델과 유사한 성능을 보일 수 있음을 보였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 가사의 감정 분석과 구조 분석을 이용한 노래간 유사도 측정 시스템
4. 실험
5. 결론 및 향후 연구
References

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0