메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
이준환 (광운대학교) 유지상 (광운대학교)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 한국방송·미디어공학회 2017 하계학술대회
발행연도
2017.6
수록면
36 - 39 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
2014 년 Ian Goodfellow 가 발표한 한편의 논문은 머신러닝 분야에 새로운 방향을 제시하였다. Generative Adversarial Networks, 일명 GAN 이라 불리는 이 논문은 이전까지 딥러닝으로 하지못했던 새로운 것을 창조해내는 작업을 하는 첫번째 딥러닝 알고리즘이다. 이전까지는 딥러닝을 통해 영상에서 객체의 종류를 판단하는 Classification 문제나, 영상에서 특정 객체를 검출하여 위치를 찾는 Object detection, 영상 내 특정 객체만 분리해내는 Image segmentation 문제를 해결하고 있었다. GAN 의 등장으로, 다양한 방면에서 GAN 을 적용하여 기존에는 하지 못했던 새로운 분야에 딥러닝을 적용한 사례들이 등장하고 있다. 본 논문에서는 GAN 의 원리 분석과 GAN 을 응용하여 여러 분야에 적용한 사례들을 살펴보고자 한다.

목차

요약
1. 서론
2. Minimax two-player game
3. Extensions of GAN
4. 결론
ACKNOWLEDGEMENT
5. 참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-567-001019884