메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이정환 (금오공과대학교) 김병만 (금오공과대학교) 신윤식 (금오공과대학교)
저널정보
한국산업정보학회 한국산업정보학회논문지 한국산업정보학회논문지 제23권 제4호
발행연도
2018.8
수록면
41 - 53 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 들어 머신 러닝 기술의 발달로 기존 영상 기반의 응용시스템에 딥러닝 기술을 적용하는 사례들이 늘고 있다. 이러한 맥락에서 화재 감지 분야에서도 CNN (Convolutional Neural Network)을 적용하는 시도들이 이루어지고 있다. 본 논문에서는 기존 전처리 방법과 특징 추출 방법이 CNN과 결합되었을 때 화재 탐지에 어떤 효과를 유발하는지를 검증하기 위해 인식 성능과 학습 시간을 평가해 보았다. VGG19 CNN 구조를 변경, 즉 컨볼루션층을 조금씩 늘리면서 실험을 진행한 결과, 일반적으로 전처리하지 않는 이미지를 사용한 경우가 성능이 훨씬 좋음을 확인할 수 있었다. 또한 성능적인 측면에서는 전처리 방법과 특징 추출 방법이 부정적인 영향을 미치지만 학습속도 측면에서는 많은 이득이 있음을 확인할 수 있었다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. 제안 방법
4. 실험 및 성능 평가
5. 결론
References

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-530-003397653