메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최민성 (군산대학교) 온병원 (군산대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.46 No.8
발행연도
2019.8
수록면
800 - 813 (14page)
DOI
10.5626/JOK.2019.46.8.800

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
딥러닝을 이용한 감성분석에서는 감성이 레이블 된 많은 양의 학습데이터가 필요하다. 그러나 사람이 직접 감성을 레이블 하는 것은 시간과 비용에 제약이 있고 많은 데이터에서 감성분석에 적합한 충분한 양의 데이터를 수집하는 것은 쉽지 않다. 본 논문에서는 이러한 문제점을 해결하기 위해 기존의 감성사전을 활용하여 감성점수를 매긴 후 감성 변환 요소가 존재하면 의존 구문 분석 및 형태소 분석을 수행해 감성점수를 재설정하여 감성이 레이블 된 대용량 학습데이터를 자동 생성하는 방안을 제안한다. 감성변환 요소로는 감성 반전, 감성 활성화, 감성 비활성화가 있으며 감성점수가 높은 Top-k의 데이터를 추출하였다. 실험 결과 수작업에 비해 짧은 시간에 대용량의 학습데이터를 생성하였으며 학습데이터의 양이 증가함에 따라 딥러닝의 성능이 향상됨을 확인하였다. 그리고 감성사전만을 사용한 모델의 정확도는 80.17%, 자연어처리 기술을 추가한 제안 모델의 정확도는 89.17%로 9%의 정확도 향상을 보였다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. 제안방안
4. 실험
5. 결론 및 향후 연구
References

참고문헌 (36)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0