메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김시현 (The University of Suwon)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제23권 제3호
발행연도
2019.9
수록면
910 - 916 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
자연 영상의 비지역적 유사성은 다양한 영상 응용 분야에서 활용되는 중요한 특성 중에 하나이다. 영상 내 객체의 에지나 텍스쳐, 무늬 등은 비지역적으로 반복되어 나타난다. 유사도가 높은 영상 블록들로 군집을 형성하면 자연스럽게 그로부터 특징을 추출할 수 있다. 또한 군집의 크기가 클수록 원치 않는 백색 잡음에 대한 대항력을 키울 수 있다. 영상 신호 처리 중 잡음 제거 관련 연구는 백색 가산 잡음이 포함된 영상의 복원을 다룬다. 본 논문에서는 백색 잡음이 포함된 영상을 유사도에 따라 적응적으로 군집화하여 잡음 신호에 대한 이득을 향상시키고, 이를 통해 잡음을 효과적으로 제거하는 알고리듬을 제안한다. 다양한 영상과 잡음 강도에 대한 모의실험 결과로부터 제안된 알고리듬이 에지, 텍스쳐, 무늬 영역을 잘 보존하면서 잡음을 제거할 수 있음을 시각적으로 확인할 수 있고, 또한 최근 보고된 여러 방법들과의 잡음 제거 성능 수치 비교에서도 우수한 결과를 보인다.

목차

Abstract
요약
Ⅰ. 서론
Ⅱ. 적응적 군집화 기반 영상 잡음 제거
Ⅲ. 객체 적응적 클러스터링
Ⅳ. 잡음 제거 성능 실험
Ⅴ. 결론
References

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0