메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국정보처리학회 JIPS(Journal of Information Processing Systems) JIPS(Journal of Information Processing Systems) 제16권 제3호
발행연도
2020.1
수록면
612 - 628 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This paper presents a new approach for detecting abnormal behaviors in complex surveillance scenes whereanomalies are subtle and difficult to distinguish due to the intricate correlations among multiple objects’behaviors. Specifically, a cascaded probabilistic topic model was put forward for learning the spatial contextof local behavior and the temporal context of global behavior in two different stages. In the first stage of topicmodeling, unlike the existing approaches using either optical flows or complete trajectories, spatio-temporalcorrelations between the trajectory fragments in video clips were modeled by the latent Dirichlet allocation(LDA) topic model based on Markov random fields to obtain the spatial context of local behavior in each videoclip. The local behavior topic categories were then obtained by exploiting the spectral clustering algorithm. Based on the construction of a dictionary through the process of local behavior topic clustering, the secondphase of the LDA topic model learns the correlations of global behaviors and temporal context. In particular,an abnormal behavior recognition method was developed based on the learned spatio-temporal context ofbehaviors. The specific identification method adopts a top-down strategy and consists of two stages: anomalyrecognition of video clip and anomalous behavior recognition within each video clip. Evaluation was performedusing the validity of spatio-temporal context learning for local behavior topics and abnormal behaviorrecognition. Furthermore, the performance of the proposed approach in abnormal behavior recognitionimproved effectively and significantly in complex surveillance scenes.

목차

등록된 정보가 없습니다.

참고문헌 (27)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0