메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Naejoung Kwak (Pai Chai University) Byoungyup Lee (Pai Chai University)
저널정보
한국콘텐츠학회(IJOC) International JOURNAL OF CONTENTS International JOURNAL OF CONTENTS Vol.20 No.4
발행연도
2024.12
수록면
84 - 95 (12page)
DOI
10.5392/IJoC.2024.20.4.084

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
As society develops, the demand for security is rapidly increasing. Accordingly, there is growing interest in research on methods to detect and prevent abnormal behavior using surveillance cameras in public places and private spaces such as shopping malls and airports for human safety. Many detection techniques based on deep learning models have been researched in the field of abnormal behavior detection. However, due to the lack of labeled abnormal behavior data, there are significant difficulties in developing an effective detection system. This paper surveys methods for deep learning methods to detect abnormal human behavior in surveillance video and presents recent techniques. First, I will introduce popular datasets that have often been used in previous research. After that, we categorized the existing methods for detecting abnormal behavior using deep learning into three types: supervised learning, unsupervised learning, and partially-supervised learning. We then explained the basic concepts and advantages of each method and summarized their shortcomings. We also briefly describe future research directions based on the advantages and disadvantages of each method. Based on this, it is expected that the technology of video surveillance systems that apply abnormal behavior detection will further develop.

목차

Abstract
1. Introduction
2. Datasets
3. Abnormal human behavior detection
4. Deep learning-based abnormal behavior detection method
5. Future research directions
6. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092207272