메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Zhang, Chuan (School of Public Health, Capital Medical University) Gao, Xing (School of Public Health, Capital Medical University)
저널정보
아시아태평양암예방학회 Asian Pacific journal of cancer prevention : APJCP Asian Pacific journal of cancer prevention : APJCP 제16권 제5호
발행연도
2015.1
수록면
1,759 - 1,764 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose: To establish the concept of lung cancer hazard assessment theoretical models, evaluating the degree of lung cancer risk of Beijing for regional population lung cancer hazard assessment to provide a basis for technical support. Materials and Methods: ISO standards were used to classify stratified analysis for the entire population, life cycle, processes and socioeconomic management. Associated risk factors were evaluated as lung cancer hazard risk assessment first class indicators. Study design: Using the above materials, indicators were given the weight coefficients, building lung cancer risk assessment theoretical models. Regional data for Beijing were entered into the theoretical model to calculate the parameters of each indicator and evaluate the degree of local lung cancer risk. Results: Adopting the concept of lung cancer hazard assessment and theoretical models for regional populations, we established a lung cancer hazard risk assessment system, including 2 first indicators, 8 secondary indicators and 18 third indicators. All indicators were given weight coefficients and used as information sources. Score of hazard for lung cancer was 84.4 in Beijing. Conclusions: Comprehensively and systematically building a lung cancer risk assessment theoretical model for regional populations in conceivable, evaluating the degree of lung cancer risk of Beijing, providing technical support and scientific basis for interventions for prevention.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0