메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
권석진 (한국철도기술연구원) 김민수 (한국철도기술연구원)
저널정보
한국산학기술학회 한국산학기술학회 논문지 한국산학기술학회논문지 제21권 제11호
발행연도
2020.11
수록면
53 - 60 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (5)

초록· 키워드

오류제보하기
철도차량의 대차는 열차 주행을 위한 핵심적인 장치이다. 철도차량의 대차에서 피로결함은 운행 중 기대되지 않거나 과도한 하중, 용접결함, 재료 결함 등의 다양한 요인에 의해 발생할 수 있다. 철도차량의 사고를 방지하기 위해서 차체-대차연결부의 손상을 검출하고 발생 결함에 대한 정확한 평가가 요구된다. 이러한 철도차량의 차체-대차 연결부는 초음파 비파괴 검사를 통하여 건전성을 확보하고 있으나 결함 발생에 대한 학습기법을 이용한 판정방법이 필요하다. 최근 미세한 결함이나 유사한 결함을 높은 인식율로 검출하기 위하여 딥러닝 기법에 관한 여러 연구가 진행되고 있다. 본 연구에서는 철도차량의 차체-대차 연결부의 결함 검출능력을 위하여 용접부의 인공결함 시편에 대하여 데이터베이스 구축하였으며. 웨지형 초음파 센서를 이용하여 차체-대차 연결부에 대한 비파괴 검사를 수행하였다. 부가적으로 인적오류를 최소화하기 위하여 결함판단 학습기법인 합성곱 신경망기법(Convolutional Neural Network)을 적용하였다. 그 결과 합성곱 신경망기법 기법을 이용하여 철도차량의 차체-대차 연결 용접부의 균열을 99.98%이상 균열성 결함으로 판별할 수 있었으며 철도차량 차체-대차 연결부의 비파괴검사시 본 연구의 기술이 적용 가능함을 확인할 수 있었다.

목차

요약
Abstract
1. 서론
2. 결함신호 취득 및 데이터베이스 구축
3. CNN의 설계 및 학습
4. 결론
References

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0