메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이나경 (숙명여자대학교) 김주연 (숙명여자대학교) 심준호 (숙명여자대학교)
저널정보
한국전자거래학회 한국전자거래학회지 한국전자거래학회지 제26권 제1호
발행연도
2021.2
수록면
107 - 126 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
전자상거래에서 상품 정보에 따른 신속하고 정확한 자동 상품 분류는 중요하다. 최근의 딥러닝 기술 발전은 자동 상품 분류에도 적용이 시도되고 있다. 성능이 우수한 딥러닝 모델 개발에 있어, 학습 데이터의 품질과 모델에 적합한 데이터 전처리는 중요하다. 본 연구에서는, 텍스트 상품 데이터를 기반으로 카테고리를 자동 유추할 때, 데이터의 전처리 정도에 따른 영향력과 학습 데이터 선택 범위 영향력을 CNN모델을 사례 모델로 이용하여 비교 분석한다. 실험 분석에 사용한 데이터는 실제 데이터를 사용하여 연구 결과의 실증을 담보하였다. 본 연구가 도출한 실증 분석 및 결과는 딥러닝 상품 분류 모델 개발 시 성능 향상을 위한 레퍼런스로서 의의가 있다.

목차

초록
ABSTRACT
1. 서론
2. 관련연구
3. 모델
4. 데이터
5. 실험
5. 결론
References

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-004-001568872