메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김현규 (Sahmyook University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제26권 제8호(통권 제209호)
발행연도
2021.8
수록면
55 - 63 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
소셜 빅데이터는 신조어나 고유명사를 포함하는 경우가 많으며, 이들을 처리하기 위해 단어별 출현 빈도수를 기반으로 한 통계적인 형태소 분석 방법이 많이 활용되고 있다. 그러나 이들 방법에서는 복합 명사를 제대로 인지하지 못해, 키워드 추출의 정확도가 떨어지는 문제점이 지적되고 있다. 본 논문에서는 소셜 빅데이터의 키워드 분석에 있어 복합 명사를 추출하기 위한 방법을 제안한다. 제안 방법은 형태소 분석 단계를 통해 얻어진 단어를 조합하여 복합 명사 후보군을 만들고, 주어진 리뷰에서 이들의 출현 빈도를 조사하여 얻어진 빈도수를 기반으로 복합 명사를 추출한다. 복합 명사 후보군을 구성하는 방법에 따라 두 가지 알고리즘을 제안하였으며, 각 알고리즘의 성능을 수식으로 표현하고 비교한다. 그리고 온라인에서 수집된 실제 데이터를 대상으로 실험을 통해 비교 결과를 검증하는 동시에, 제안 방법이 실시간 처리에도 적합함을 보여준다.

목차

[Abstract]
[요약]
I. Introduction
II. Related Work
III. Proposed Method
IV. Experimental Results
V. Conclusion and Future Work
REFERENCES

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0