메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김보겸 (충북대학교) 이재성 (충북대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.43 No.4
발행연도
2016.4
수록면
430 - 436 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
형태소 분석시 나타나는 고유명사나 신조어 등의 미등록어에 대한 처리는 다양한 도메인의 문서 처리에 필수적이다. 이 논문에서는 3단계 확률 기반 형태소 분석에서 미등록어를 분리하고 태깅하기 위한 방법을 제시한다. 이 방법은 고유명사나 일반명사와 같은 개방어 뒤에 붙는 다양한 접미사를 분석하여 미등록 개방어를 추정할 수 있도록 했다. 이를 위해 형태소 품사 부착 말뭉치에서 자동으로 접미사 패턴을 학습하고, 확률 기반 형태소 분석에 맞도록 미등록 개방어의 분리 및 태깅 확률을 계산하는 방법을 제시하였다. 실험 결과, 제안한 방법은 새로운 미등록 용어가 많이 나오는 문서에서 미등록어 처리 성능을 크게 향상시켰다.

목차

요약
Abstract
1. 서론
2. 3단계 확률 기반 형태소 분석
3. 미등록어 분리 및 태깅
4. 실험 및 결과
5. 결론
References

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0