메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
안보라 (라온휴병원 물리치료실) 우영근 (전주대학교)
저널정보
대한치료과학회 대한치료과학회지 대한치료과학회지 제8권 제2호
발행연도
2016.1
수록면
59 - 66 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objective: In gait analysis, accelerometers are used to measure movement in three dimensions based on the three axes passing through the body’s center of mass point. Recently, smartphones have developed gait analysis system applications to evaluate spatiotemporal parameters of walking ability. This study aimed to investigate the usability of a smartphone accelerometer for gait analysis in healthy adults by analyzing correlations between the movement of the center of mass and gait parameters. Method: In this study, gait evaluation was performed on 50 adults using plantar pressure and an application on a smartphone with an inbuilt accelerometer simultaneously. Pearson correlation coefficients were used to compare the correlation of variables from the smartphone application. Results: There was a statistically significant correlation (p<0.05) between movement of the center of mass as measured by the smartphone application and gait parameters (step length, stride length, step width, midstance, pre-swing, double stance phase, and velocity). Moreover, there was a statistically significant correlation (p<0.05) between the parameters measured by the smartphone application (duration, gait speed, step length, cadence, and bilateral symmetry) and the measured gait parameters (step length, stride length, step time, stride time, cadence, and velocity). Conclusion: This study showed the potential for a smartphone application to be a useful tool to evaluate gait. Therefore, if a smartphone accelerometer and a program with proven reliability were developed, gait analysis could be performed more conveniently and efficiently in clinical practice.

목차

등록된 정보가 없습니다.

참고문헌 (29)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0