메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Kyoung In Lee (Mokpo Seafood Export Center) Ji Hwan Back (Gwangju University) Byoung Sik Pyo (Dongshin University) Shang Wha Cha (Micromax Farming Association Corporation)
저널정보
한국약용작물학회 한국약용작물학회지 한국약용작물학회지 제30권 제6호
발행연도
2022.12
수록면
401 - 410 (10page)
DOI
10.7783/KJMCS.2022.30.6.401

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Background: To identify suitable varieties of coffee for Korea, various varieties of coffee trees are being cultivated. In relation to this process, it is necessary to develop the analysis methods to confirm and compare the characteristics of each variety.
Methods and Results: In this study, ethanol extracts of coffee tree leaves of four varieties, Coffea arabica var. bourbon (Bourbon), C. arabica var. maragogype (Maragogipe), C. arabica var. typica(Typica), and C. arabica var. geisha (Geisha), were targeted. The liquid chromatography (LC) profile of each extract was analyzed using a ultra-violet detector. Sixteen major peaks were selected from the LC profile analysis results, and mass spectrometry (MS) was performed using an LC-MS/MS system with the same separation conditions. The MS results confirmed that the major peaks were caffeoyl quinic acid, procyanidin, dicaffeoyl quinic acid, mangiferin, cinchonain I isomer, iriflophenone 3-C-glucoside, caffeine, and theobromine. The quantities of these major compounds were compared for each variety through additional multiple reaction monitoring mode MS analysis.
Conclusions: Differences in the major compound contents of the leaves of different domestic coffee tree varieties were confirmed, and LC-MS/MS analysis was found to be useful for the comparative analysis of compounds between varieties.

목차

ABSTRACT
INTRODUCTION
MATERIALS AND METHODS
RESULTS AND DISCUSSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-524-000309812