메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
황치곤 (광운대학교) 윤창표 (경기과학기술대학교) 이수욱 (광운대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제27권 제1호
발행연도
2023.1
수록면
41 - 46 (6page)
DOI
10.6109/jkiice.2023.27.1.41

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근, 빅데이터 분석은 기계학습의 발전에 따른 다양한 기법들을 이용할 수 있다. 현실에서 수집된 빅데이터는 단어 간의 관계성에 대한 의미적 분석을 바탕으로 같거나 유사한 용어에 대한 자동화된 정제기법이 부족하다. 빅데이터는 일반적인 문장으로 기술되어 있다. 이러한 문제를 해결하기 위해 문장의 형태소 분석과 의미를 이해해야 할 필요가 있다. 이에 자연어를 분석하기 위한 기법인 NLP는 단어의 관계성과 문장을 이해할 수 있다. 본 논문에서는 빅데이터에서 추출된 문장에서 단어를 추출하여 단어 간의 연관 관계를 생성하는 방법을 연구한다. 이에 트랜스포머 기술을 이용한다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 제안 시스템
Ⅳ. 실험 및 결과
Ⅴ. 결론
REFERENCES

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-004-000371753